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Abstract In this work, a scheme to generate exact wave
functions and eigenvalues for the spherically symmetric
three-dimensional position-dependent effective mass Schrö-
dinger equation is presented. The methodology is imple-
mented by means of separation of variables and point
canonical transformations that allow to recognize a radial
dependent equation with important differences as compared
with the one-dimensional position dependent mass problem,
which has been widely studied. This situation deserves to
consider the boundary conditions of the emergent problem.
To obtain specific exact solutions, the methodology requires
known solutions of ordinary one-dimensional Schrödinger
equations. We have preferred those applications that use the
harmonic oscillator and the Morse oscillator solutions.

Keyword Harmonic potential . Morse potential . Position-
dependent effective mass . Three dimensional Schrödinger
equation

Introduction

The position-dependent (effective) mass Schrödinger equa-
tion (PDMSE) has a theoretical foundation widely explained
in the related literature and it is concerned with aspects of
solid state theory [1–6], Bhomian quantum motion [7], DFT

theory [8–12], Bohr Hamiltonian in nuclear theory [13, 14]
and other condensed matter systems [1, 15–19]. Study of the
PDMSE has attracted a continual interest focused in deter-
mining the correct order in mass and momentum operators
[20–23] and also in obtaining exact solutions [24–45]. Sev-
eral techniques allow to identify the appropriate couple of
mass and potential functions that lead to a known solvable
problem of ordinary quantum mechanics Schrödinger equa-
tion (QMSE), also named the reference problem [45]. The
point canonical transformations (PCT) [24–31], Lie algebras
[32–35], supersymmetry algebra, [36–39], shape invariance
technique [36, 42–45], and so on, are procedures that now-
adays are being improved to visualize the mentioned pair of
functions among the many possibilities that exist. Differ-
ence between the potentials of the QMSE and the
corresponding ones of the PDMSE is a mass depending
term which is expressed in different forms by authors. In refs.
[46–50] this term was reduced after a point canonical trans-
formation scheme to the form VPCT 0 W2 + W′, for a suitable
functionW. The advantages of this expression were shown for
the one-dimensional PDMSE with null potential [50].

On the other hand, although the one-dimensional PDMSE
has attracted wide attention, this is not the case for the three-
dimensional PDMSE. The three dimensional PDMSE with a
central potential and determined values of the total angular
momentum and its azimuthal projection has been studied for
example in [51–54], where we can see its reduction to an
angular equation and a radial equation that does not corre-
spond to the one-dimensional PDMSE. This fact is also point-
ed out in this work and means that resolution of the three-
dimensional problem through its corresponding radial equa-
tion is a new kind of Sturm-Liouville problem to be studied in
its particular form. The situation is appraised in the kind of
solutions reported in references previously mentioned, which
are divorced from those of the one-dimensional PDMSE.
However, in the scheme we propose in this work, the
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mentioned radial equation is again reduced to the same form
as it had in the one-dimensional case [46–50], the difference is
now transferred to the relation between the mass function and
theW function, to be used in the corresponding termVPCT. The
modifications affect not only the expression of the mass
function, but also the new independent variable involved in
the point canonical transformation. That feature implies a
great difference between the possible solvable potentials for
the one-dimensional and the three-dimensional cases. We can
mention that the one-dimensional PDMSE has been solved for
the Morse potential [40, 43, 44] but resolution of this partic-
ular potential is a new challenge for the three-dimensional
PDMSE as it will be discussed in this work. The article is
organized as follows: in The three-dimensional PDMSE with
spherical symmetry we deduce the radial PDMSE by applying
the separation of variables scheme. Next, we use a point
canonical transformation to reduce the radial problem to a
one-dimensional QMSE with a term of the form VPCT. Some
considerations about the boundary conditions at the origin and
at infinity are included. In Solvable three-dimensional
PDMSE with spherical symmetry a series of solvable pairs
of mass and potential functions are studied and we mark the
cases corresponding to the pairs found by previous authors.
We are particularly interested in getting solutions that use as
reference potentials some of the most important QMSE poten-
tials, like the harmonic oscillator potential and the Morse
potential. Our conclusions are expressed in the final section.

The three-dimensional PDMSE with spherical symmetry

Let us consider the PDMSE expressed in three dimensions
through the Nabla operator

� ℏ2

2m0
r � 1

MðrÞ rΨ

� �
þ V ðrÞ Ψ ¼ E Ψ ; ð1Þ

where m0 is the mass of the particle and M(r) is a dimen-
sionless position dependent factor named the mass function
hereafter, that is, m(r)0m0M(r) is the position dependent
mass of the system. Suppose that both, the mass function
and the potential are only r dependent functions, then, the
previous equation written in terms of the total angular mo-
mentum operator L, is

ℏ2

2m
� 1

r2
@

@r

r2

MðrÞ
@Ψ
@r

� �
þ L2

r2MðrÞ Ψ
� �

þ V ðrÞΨ ¼ E Ψ :

ð2Þ
Spherical symmetry allows to look for eigenstates of the

total angular momentum and its z - projection in the form
Ψ(r, θ, φ) 0 R(r)Ylm(θ, φ), with Ylm(θ, φ) being the spherical
harmonics and R(r) the radial function that satisfies the
radial PDMSE

1
r2

d
dr

r2

MðrÞ
dRðrÞ
dr

� �
� l lþ1ð Þ

r2MðrÞ RðrÞ þ k E � V ðrÞ½ �RðrÞ ¼ 0;
ð3Þ

where 1
k ¼ H 2

2m0
. Without loss of generality, hereafter we set

κ01. The previous equation can also be written in the form

1

r2
d

dr

r2

MðrÞ
dRðrÞ
dr

� �
þ E � VlðrÞ½ �RðrÞ ¼ 0; ð4Þ

where the potential with centrifugal term is

VlðrÞ ¼ V ðrÞ þ l l þ 1ð Þ
r2MðrÞ : ð5Þ

For the sake of simplicity, we will use only the name of
the function for those which depend on the variable r and
are expressible also in the variable u, for example M 0 M(r)
0 M(r(u)), W 0 W(r) 0 W(r(u)) and so on. In order to solve
the previous radial PDMSE let us take the variable change

du ¼ dr
ffiffiffiffiffi
M

p
; ð6Þ

for a definitely positive function of mass M. After change of
variable, Eq. 4 isffiffiffiffiffi

M
p

r2
d

du

r2ffiffiffiffiffi
M

p dR

du

� �
þ E � Vl½ �R ¼ 0 ð7Þ

or alternatively

d2R

du2
þ d

du
ln

r2ffiffiffiffiffi
M

p
� �

dR

du
þ E � Vl½ �R ¼ 0: ð8Þ

To complete a point canonical transformation [51] we
define new radial unknown function φ by

8 ¼ R e
R

W du; ð9Þ
which allows the identity

R
0 0 þ 2W R

0
� �

e
R

W du ¼ d28

du2
�W

0
8 �W 28 ð10Þ

and transforms Eq. 8, into the form

d28

du2
�W

0
8 �W 28 þ E � Vl½ �8 ¼ 0: ð11Þ

This last equation is an ordinary one-dimensional Schrö-
dinger problem

d28

du2
þ E � Ul½ �8 ¼ 0 ð12Þ

with potential

Ul ¼ V þ l l þ 1ð Þ
r2M

þ W 2 þW
0

� �
; ð13Þ
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where function W is given by

W ¼ d

du
ln

r

M1 4=
¼ 1

r

dr

du
� 1

4M

dM

du
: ð14Þ

Upon substitution of this W function into Eq. 9 it merges
the solution of the radial PDMSE in the form

RðrÞ ¼ 8
M 1 4=

r
; ð15Þ

which seems to be the usual form of the standard radial
function in quantum mechanics. We can mention that Eq. 14
is one of our main results as it is the three-dimensional
generalization of the W function; its importance will be
exploited in the next section. On the other hand, the relation
between the reference potential Ul and the target potential V
can also be written as

Ul ¼ V þ l lþ1ð Þ
r2M

þ 7
16M3

dM
dr

� �2 � 1
4M2

d2M
dr2 � 1

rM 2
dM
dr

� �
;

ð16Þ

where the last term inside the parenthesis makes the differ-
ence with a one-dimensional problem [40–42].

To get exact solutions of the radial PDMSE it is neces-
sary to look for point canonical transformations u 0 u(r) that
reduce the sum of the potential term Vl and of the point
canonical transformation associated term VPCT, to a known
solvable potential Ul(u). In this regard, the next section is
devoted to analyze this condition for several point canonical
transformations, some of which are cases analyzed in the
current literature. However, before ending the present sec-
tion, we consider some remarks about boundary conditions
on the radial wave functions that follow from its previous
expressions. First, in order to guarantee that function R(r) be
finite in the origin, the function χ 0 φM1/4, that arose in
Eq. 15 should satisfy the limiting condition [φM1/4]r→0 0 0;
in theM(0) ≠ 0 case it implies the boundary condition φ(0) 0
0. The case when mass tends to zero at the origin means an
increase of the radial interaction force when approaching the
central point. The divergence of the real potential of the
system at this point should lead to the boundary condition
for the radial part of the wave function in the form R(0)00.

On the other hand, the cancellation of the mass function
at points different from the origin requires to consider the
behavior of the potential term VPCT. Let us propose that the
mass function tends to zero according to M ≈ εk, with ε 0 |r
−r0| and k>0. Then, according to the equation that defines

W, this function behaves like W � �k"�
kþ2
2 , and the term of

potential VPCT � k 3k 2þ 1=ð Þ"� kþ2ð Þ , which means that
VPCT has a divergence to a certain radius r≠0. In a similar
form, if the mass tends to be null in infinite, according to the
rule M≈r−k, with k>0, then W≈(k/4+1)rk/2–1, and conse-
quently VPCT≈3k/4(k/4+1)rk-2. That is, when the mass tends

to zero more quickly than r−2 then the potential VPCT

diverges. By a similar analysis, if the mass tends toward
infinity as M ≈ rk then the potential becomes of the form
VPCT ≈ r−k−2. These considerations allow to propose and
analyze the character of the potentials that are solved in the
applications.

Finally, we mention that in a similar way to the one-
dimensional case, the wave function normalizations can be
performed as much in the variable r as in variable u accord-
ing toZ

r2 RðrÞj j2dr ¼
Z

8j j2M 1 2= dr ¼
Z

8j j2du; ð17Þ

supposed that the angular functions Ylm(θ, φ) are normalized
as is usual.

Solvable three-dimensional PDMSE with spherical
symmetry

Equations 6 and 14 show the interrelation that exists be-
tween the function of mass M, the function W, and the
change of variable u 0 u(r) of the PCT; anyone of these
functions determines the term VPCT in the relation of poten-
tials expressed in Eq. 13. In this section we explore the
possibilities of the function of mass or of the PCT to con-
tribute to the potential through the part VPCT, which together
with the term Vl(r) should generate a solvable potential Ul.
To improve analysis we next list interrelation equations
between the three mentioned functions in a detailed form.
The task could be performed by using the variable r or the
variable u:

From u 0 u(r) and by defining

1

f
¼ du

dr
; ð18Þ

we have

MðrÞ ¼ du

dr

� �2

¼ 1

f 2ðrÞ ð19Þ

and

W ðrÞ ¼ 1ffiffiffiffiffi
M

p d

dr
ln

r

M 1 4=
¼ f

r
þ 1

2

df

dr
: ð20Þ

The PCT potential term VPCT is given by

VPCT ¼ W 2 þ f
d

dr
W ðrÞ: ð21Þ

Besides, the PCT is determined from W 0 W(r) by

f ðrÞ ¼ 2

r2

Z
r2W ðrÞdr þ C1

	 

ð22Þ
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and

uðrÞ ¼
Z

dr

f ðrÞ þ C2; ð23Þ

where C1 and C2 are, as usual, integration constants.
On the other hand, from r 0 r(u) we first get

f ðuÞ ¼ dr
du ; M ¼ 1

f 2ðuÞ ð24Þ

then

W ðuÞ ¼ d

du
ln

rðuÞ
M1 4=

¼ d

du
ln rðuÞ

ffiffiffiffiffiffiffiffiffi
f ðuÞ

p� �
ð25Þ

and the PCT potential term is

VPCT ¼ W 2 þW 0ðuÞ: ð26Þ
Finally, from W 0 W(u) the PCT comes from

r3ðuÞ ¼ C3

Z
e
R

2W ðuÞ duduþ C4; ð27Þ

where C3, C4 are, as before, integration constants.
Let us now analyze closely the main relation between

potentials Ul and V expressed in Eq. 13. After using expres-
sion (20) one finds that the centrifugal term l l þ 1ð Þ r2Mð Þ�
is similar to those included in the calculation of the VPCT

term, that is

Ul ¼ V þ l l þ 1ð Þ f
r

� �2
þ2 f

r
df
dr þ 1

4
df
dr

� �2 þ 1
2 f

d2f
dr2 ;

ð28Þ

which shows the quadratic dependence of the centrifugal
term and the VPCT term on the function f and/or its deriva-
tives. We consider this equation our second main result in
this paper. Next we exploit some interesting applications for
the proposed scheme.

Case I). f(r) 0 βr.
This is the simplest case in Eq. 28, it implies the mass

function M(r) 0 β−2r−2 and the PCT given by βu 0 1n βr or
βr 0 exp(βu). We also have W03β/2, VPCT09β

2/4, conse-
quently the relation of potentials becomes

Ul ¼ V þ l l þ 1ð Þb2 þ 9

4
b2; ð29Þ

showing that the only difference between the potentials is a
constant term which increases as the angular momentum
does. The PCT is known to be the one allowing a relation
between Coulomb potential and the Morse potential, mean-
ing that it maps the radial domain into the full line range. We
can propose any solvable unidimensional V(u) in the sense
of constant mass quantum mechanics to obtain a solvable
Ul(u). Let us list some of them

a) The Morse potential.
In the u variable, this potential is written as

V ¼ D e�2 a u � 2 e�a u
� � ð30Þ

that switches to the r variable by using e�au ¼ 1
br

� �a b=

to get the solvable PDMSE potential

V ¼ D
1

b2r2

� �a b=

�2
1

br

� �a b=
 !

; ð31Þ

with eigenvalues

Enl ¼ � a2

4
x� 2n� 1ð Þ2 þ l l þ 1ð Þb2 þ 9

4
b2; ð32Þ

n00, 1, 2…, and normalized eigenfunctions

8 nðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a x�2n�1ð Þ

x�nð Þ
q

�w
x�2n�1

2 e�
1
2wLx�2n�1

n ðwÞ;
ð33Þ

with x ¼ 2
ffiffiffi
D

p
a and W 0 ξe−α u. The radial eigenfunctions

turn to be

RnlðrÞ ¼ 8 nðwÞ
1

r
ffiffiffiffiffi
br

p ; ð34Þ

withw ¼ x 1
br

� �a b=
. A graph of this Morse-like potential

and its eigenfunctions are presented on Fig. 1, where we
observe that the discrete values of the energy have the
usual relationship to the potential, except the last one,
this energy eigenvalue is greater than the value of the

r0

)(rV

)(rm

2
0

2 || lRr

lE0

lE1

lE2

2
1

2 || lRr

2
2

2 || lRr

Fig. 1 This graph shows the radial Morse-like potential of Eq. 31
adjusted to be a potential with three eigenstates and the corresponding
position-dependent mass distribution
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potential at infinity. This situation seems to be charac-
teristic of the PDMSE solutions as it has also been
observed in some one-dimensional cases [49].

b) Harmonic Oscillator V 0 ξ2u2.
In this case, βu 0 1n βr leads to

V ¼ x
b
ln br

� �2

ð35Þ

with eigenvalues

Enl ¼ 2nþ 1ð Þxþ l l þ 1ð Þb2 þ 9

4
b2 ð36Þ

and normalized eigenfunctions

RnlðrÞ ¼ 8 nðuÞ
1

r
ffiffiffiffiffi
br

p ð37Þ

where

8 nðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
p

2nn!
ffiffiffi
p

p
s

e�x u2 2= Hn

ffiffiffi
x

p
u

� �
: ð38Þ

In Fig. 2, this potential and its corresponding radial
eigenfunctions and mass distribution are shown. With
regard to this figure and the earlier we can mention
another situation, which has also been observed in
one-dimensional PDMSE solutions, and that is, when
mass values decrease, wave functions are distributed
more widely, in such a way that the particle occupies a
larger space but with low values of probability.

Case IIÞ: f ¼ r�g=2 b 1þ g 2=ð Þ=

For this selection, every term in Eq. 28 is expressed
in the same power of the variable r, which is a remark-
able simplification. The mass has the form M (r) 0 αrγ,
where α0β2(1+γ/2)2 with β>0. The change of variable

is bu ¼ r1þ
g
2, which maps the half r-line into the half u-

line for a wide interval of values of γ. TheW function is
W0(1–γ/4)/u(1+γ/2) and relation between the poten-
tials is

Ul ¼ V þ l l þ 1ð Þ � 1� g 4=ð Þ 3
4 g

1þ g 2=ð Þ2
1

u2
; ð39Þ

where the second term, if interpreted as an angular
momentum term of the form λ(λ+1)/u2, gives the value
of the new parameter λ in terms of the previous ones
into the form

l ¼ � 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l l þ 1ð Þ þ g � 1ð Þ2

q
g þ 2

: ð40Þ

To have explicit solutions we propose any solvable
potential in the half u - line.

a) Three-dimensional harmonic oscillator V0ω2u2/4.
In terms of r this potential is written

V ¼ w
2b

� �2

rgþ2; ð41Þ

with eigenvalues Enl ¼ 2nþ lþ 3
2

� �
w , that can be

carried to

Enl ¼ 2nþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l l þ 1ð Þ þ g � 1ð Þ2

q
g þ 2

0
@

1
Aw: ð42Þ

in accordance with ref. [51]. The eigenfunctions are

8 nlðuÞ ¼ Nnl y
lþ1ð Þ 2= e�y 2= Llþ1 2=

n ðyÞ; ð43Þ
with y0ωu2/2, such that radial functions are

RnlðrÞ ¼ Nnl 8 nl uðrÞð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1þ g 2=ð Þp

rg=4

r
; ð44Þ

with standard normalizations constants Nnl.
b) Coulomb potential V 0 −Z/u.

In terms of the variable r the Coulomb potential is
given by

V ¼ �Zbr�1�g 2= ; ð45Þ

r0
)(rV

)(rm

lE0

lE1

lE2

lE3

lE4

2
0

2 || lRr

2
1

2 || lRr

2
2

2 || lRr

2
3

2 || lRr

Fig. 2 This graph shows the radial Harmonic-like potential of Eq. 35
and the corresponding mass function
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whose eigenvalues are

Enl ¼ � Z2

4 nþ lþ 1ð Þ2 ð46Þ

or in terms of angular momenta as

Enl ¼ � Z2

4 nþ 1
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l lþ1ð Þþ g�1ð Þ2

p
gþ2

� �2 : ð47Þ

The eigenfunctions will be obtained from

8 nlðuÞ ¼ Nn y
lþ1e�y 2= L2lþ1

n ðyÞ ð48Þ
by taking y 0 Zu/(n + λ + 1). With these functions we
get the radial ones by using Eq. 15.

Case IIIÞ: f ðrÞ ¼ exp brð Þ:

Straightforwardly, the mass distribution for β>0 is

MðrÞ ¼ e�2br ð49Þ
and the change of variable maps the half line into the
interval 0<βu<1

bu ¼ 1� e�br: ð50Þ

Following previous formulae we get

W ¼ ebr
1

r
þ b

2

� �
ð51Þ

and the relation of potentials is

Ul ¼ V þ ebr
l l þ 1ð Þ

r2
þ 2b

r
þ 3b2

4

� �
; ð52Þ

which allows to solve for an l - dependent potential that
eliminates the second term and uses a solvable potential
in the specified interval Vs, of the form

V ¼ Vs � ebr
l l þ 1ð Þ

r2
þ 2b

r
þ 3b2

4

� �
: ð53Þ

If for example we use the infinite well potential

VsðuÞ ¼ 0; bu < 1
1; bu > 1

�
ð54Þ

we get the solution reported in ref. [54].

Case IV Þ: f ðrÞ ¼ exp �brð Þ:

If we want to use solvable QMSE potentials defined
in an infinite length interval for an exponential type
mass, it should be done in the context of an increasing
exponential mass M (r) 0 e2βr. In such a case the change
of variable from r - ray onto half u - line is given by

βu0eβr−1, the W function is W ¼ e�br 1
r � b

2

� �
and the

relation of potentials becomes

Ul ¼ V þ e�br l l þ 1ð Þ
r2

� 2b
r
þ 3b2

4

� �
: ð55Þ

At this point, as previously mentioned, the above
equation can be used to solve l - dependent potentials
of the form

V ¼ Vs � e�br l l þ 1ð Þ
r2

� 2b
r
þ 3b2

4

� �
ð56Þ

with Ul 0 Vs being for example the Coulomb potential
Vs 0 Z/u 0 −Zβ (eβr−1)−1 or the three-dimensional

harmonic potential Vs ¼ a2u2=2 ¼ a2 ebr � 1
� �2

=2b2 .
Let us consider the first case but we do not consider an
l - dependent potential. In its place we take

V ¼ �Zb
ebr � 1

þ e�br 2b
r
� 3b2

4

� �
; ð57Þ

which substituted in Eq. 55 gives

0

)(rV

)(rm

00E

10E

20E

0 r

2
00

2 || Rr

2
10

2 || Rr

2
20

2 || Rr

r

Fig. 3 This graph shows potential of Eq. 57, the corresponding mass
function and the first eigenvalues with its radial probability densities
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Ul ¼ �Zb
ebr � 1

þ e�br l l þ 1ð Þ
r2

� �
: ð58Þ

We can look for the s solutions of this case which

match the Coulomb potential U0 ¼ �Zb ebr � 1
� ��1

¼ �Z u= . The eigenvalues are

En;l¼0 ¼ � Z2

4 nþ 1ð Þ2 ð59Þ

and the eigenfunctions are constructed from the solu-
tions given in Eq. 48 with λ00. Figure 3 shows that the
solved potential is a Morse-type potential featuring an
infinite number of eigenstates, which is a notable prop-
erty since it is usually known that a Morse potential has
only a finite number of them.

Conclusions

The treatment for the resolution of the three-dimensional
PDMSE problems with central potential has displayed some
difficulties that can be appraised in set out literature. In this
work we have elaborated a procedure to improve the exist-
ing ones and allow to generate new solvable cases. Al-
though some solutions have been obtained and reported
nowadays, some new solutions were discussed. At the end
of each case we have included comments that could serve to
evidence the physical properties of variable mass systems.
The studied potentials are those that have a kind of relation
with the harmonic or the Morse oscillator potentials. In each
of the four considered cases, the relation between potentials
of the reference and target problems are general enough to
admit new solutions. To continue this work, one should take
into account that new cases of the relationship between the
above mentioned potentials are possible and they have the
possibility of generating more solutions. Moreover, it will
be possible to modify the scheme to deal with the Bohr
Hamiltonian used in nuclear theory. In fact, the energy
spectra obtained have properties that deserve comparison
with those spectra generated in other aggregation problems,
such as nuclear problems.

Acknowledgments G. O. and J. M. are thankful for the support
received from CONACYT-MEXICO through the SNI program.

References

1. Bastard G (1988) Wave mechanics applied to semiconductor het-
erostructures. Editions de Physique, Les Ulis

2. Einevoll GT, Hemmer PC, Thomsen J (1990) Phys Rev B 42:3485,
and references there in

3. Von Roos O, Mavromatis H (1985) Phys Rev B 31:2294
4. Weisbuch C, Vinter B (1993) Quantum semiconductor heterostruc-

tures. Academic, New York
5. Landsberg GT (1969) Solid state theory: methods and applications.

Wiley, London
6. Renan R, Pacheco MH, Almeida CAS (2000) J Phys A 33(50):

L509
7. Plastino AR, Casas M, Plastino A (2001) Phys Lett A 281:297
8. Ring P, Schuck P (1980) The nuclear many body poblem. Springer,

Heidelberg, p 211
9. Arias de Saavedra F, Boronat J, Polls A, Fabrocini A (1994) Phys

Rev B 50:4248
10. Puente A, Serra L, Casas M (1994) Z Phys D 31:283
11. Barranco M, Pi M, Gatica SM, Hernandez ES, Navarro J (1997)

Phys Rev B 56:8997
12. Foulkes WMC, Schluter M (1990) Phys Rev B 42:11505
13. Bonatsos D, Georgoudis PE, Lenis D, Minkov N, Quesne C (2011)

Phys Rev C 83:044321
14. Boztosun I, Bonatsos D, Inci I (2008) Phys Rev C 77:044302
15. Geller MR, Kohn E (1993) Phys Rev Lett 70:3103
16. Serra L, Lipparini E (1997) Europhys Lett 40:667
17. Barranco M, Hernández ES, Navarro J (1996) Phys Rev B 54:7394
18. Harrison P (2000) Quantum wells, wires and dots. Wiley, New

York
19. Li YM, Lu HM, Voskoboynikov O, Lee CP, Sze SM (2003) Surf

Sci 532:811
20. von Roos O (1983) Phys Rev B 27:7547
21. Marc J, Leblond L (1995) Phys Rev A 52:1845
22. de Souza Dutra A, Almeida CAS (2000) Phys Lett A 275:25
23. Bagchi B, Gorain P, Quesne C, Roychoudhury R (2004) Mod Phys

Lett A 19:2765
24. Plastino AR, Puente A, Casas M, Garcias F, Plastino A (2000) Rev

Mex Fis 46:78
25. Yu J, Dong SH (2004) Phys Lett A 325:194
26. Solimmanejad M, Moayedi SK, Tavakoli M (2006) Int J Quant

Chem 106:1027
27. Tezcan C, Sever R (2007) J Math Chem 42:387
28. Tezcan C, Sever R (2008) Int J Theor Phys 47:1471
29. Jiang L, Yi LZ, Jia CS (2005) Phys Lett A 345:279
30. Bagchi B, Gorain P, Quesne C, Roychoudhury R (2005) Europhys

Lett 72:155
31. Ju GX, Cai CY, Xiang Y, Ren ZZ (2007) Commun Theor Phys

47:1001
32. Roy B, Roy P (2002) J Phys A Math Gen 35:3961
33. Koc R, Koca M (2003) J Phys A Math Gen 36:8105
34. Roy B (2005) Europhys Lett 72:1
35. Dong SH, Peña JJ, Pacheco-García C, García-Ravelo J (2007)

Mod Phys Lett A 22:1039
36. Plastino AR, Rigo A, Casas M, Garcias F, Plastino A (1999) Phys

Rev A 60:4318
37. Milanovic V, Ikovic Z (1999) J Phys A Math Gen 32:7001
38. Gönül B, Gönül B, Tutcu D, Özer O (2002) Mod Phys Lett A

17:2057
39. Quesne C (2006) Ann Phys 321:1221
40. Aktas M, Sever R (2007) J Math Chem 43:92
41. Bagchi B, Gorain P, Quesne C, Roychoudhury R (2004) Czech J

Phys 54:1019
42. Gönül B, Özer O, Gönül B, Üzgün F (2002) Mod Phys Lett A

17:2453
43. Bagchi B, Bannerjee A, Quesne C, Tkachuk VM (2005) J Phys A

Math Gen 38:2929
44. Quesne C, Bagchi B, Banerjee A, Tkachuk VM (2006) Bulg J

Phys 33:308
45. Ganguly A, Nieto LM (2007) J Phys A Math Gen 40:7265
46. Peña JJ, Morales J, Zamora-Gallardo E, García-Ravelo J (2004) Int

J Quant Chem 100:957

J Mol Model (2013) 19:2007–2014 2013



47. Peña JJ, Ovando G, Morales J, García-Ravelo J, Pacheco-García C
(2008) Int J Quant Chem 108:2906

48. Morales J, Ovando G, Peña JJ (2010) Symmetries in nature.
Symposium in memoriam Marcos Moshinsky. Am Inst Phys
AIP-EUA 1323:233

49. Ovando G, Peña JJ, Morales J (2011) Progress in theoretical
chemistry and physics, vol 22. Springer, Heidelberg, pp 33

50. Peña JJ, Ovando G, Morales J, García-Ravelo J, Pacheco-García C
(2007) Int J Quant Chem 107:3039

51. Alhaidari AD (2002) Phys Rev A 66:042116
52. Yu J, Dong SH, Sun GH (2004) Phys Lett A 322:290
53. Gang C (2004) Phys Lett A 329:22
54. Cai CY, Ren ZZ, Ju GX (2005) Commun Theor Phys (Beijing,

China) 43:1019

2014 J Mol Model (2013) 19:2007–2014


	Three–dimensional effective mass Schrödinger equation: harmonic and Morse-type potential solutions
	Abstract
	Introduction
	The three-dimensional PDMSE with spherical symmetry
	Solvable three-dimensional PDMSE with spherical symmetry
	Conclusions
	References


